Simulating Parallel Algorithms in the MapReduce Framework with Applications to Parallel Computational Geometry
نویسنده
چکیده
In this paper, we describe efficient MapReduce simulations of parallel algorithms specified in the BSP and PRAM models. We also provide some applications of these simulation results to problems in parallel computational geometry for the MapReduce framework, which result in efficient MapReduce algorithms for sorting, 1-dimensional all nearest-neighbors, 2-dimensional convex hulls, 3-dimensional convex hulls, and fixed-dimensional linear programming. For the case when reducers can have a buffer size of B = O(n ), for a small constant > 0, all of our MapReduce algorithms for these applications run in a constant number of rounds and have a linear-sized message complexity, with high probability, while guaranteeing with high probability that all reducer lists are of size O(B).
منابع مشابه
Parleda: a Library for Parallel Processing in Computational Geometry Applications
ParLeda is a software library that provides the basic primitives needed for parallel implementation of computational geometry applications. It can also be used in implementing a parallel application that uses geometric data structures. The parallel model that we use is based on a new heterogeneous parallel model named HBSP, which is based on BSP and is introduced here. ParLeda uses two main lib...
متن کاملCloud Computing Technology Algorithms Capabilities in Managing and Processing Big Data in Business Organizations: MapReduce, Hadoop, Parallel Programming
The objective of this study is to verify the importance of the capabilities of cloud computing services in managing and analyzing big data in business organizations because the rapid development in the use of information technology in general and network technology in particular, has led to the trend of many organizations to make their applications available for use via electronic platforms hos...
متن کاملSorting, Searching, and Simulation in the MapReduce Framework
In this paper, we study the MapReduce framework from an algorithmic standpoint and demonstrate the usefulness of our approach by designing and analyzing efficient MapReduce algorithms for fundamental sorting, searching, and simulation problems. This study is motivated by a goal of ultimately putting the MapReduce framework on an equal theoretical footing with the well-known PRAM and BSP paralle...
متن کاملImplementation of the direction of arrival estimation algorithms by means of GPU-parallel processing in the Kuda environment (Research Article)
Direction-of-arrival (DOA) estimation of audio signals is critical in different areas, including electronic war, sonar, etc. The beamforming methods like Minimum Variance Distortionless Response (MVDR), Delay-and-Sum (DAS), and subspace-based Multiple Signal Classification (MUSIC) are the most known DOA estimation techniques. The mentioned methods have high computational complexity. Hence using...
متن کاملA Framework for Genetic Algorithms Based on Hadoop
Genetic Algorithms (GAs) are powerful metaheuristic techniques mostly used in many real-world applications. The sequential execution of GAs requires considerable computational power both in time and resources. Nevertheless, GAs are naturally parallel and accessing a parallel platform such as Cloud is easy and cheap. Apache Hadoop is one of the common services that can be used for parallel appli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1004.4708 شماره
صفحات -
تاریخ انتشار 2010